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Abstract

Mass spectrometry-based phosphoproteomics is becoming an essential methodology for the study of global cellular
signaling. Numerous bioinformatics resources are available to facilitate the translation of phosphopeptide identifica-
tion and quantification results into novel biological and clinical insights, a critical step in phosphoproteomics data
analysis. These resources include knowledge bases of kinases and phosphatases, phosphorylation sites, kinase inhibi-
tors, and sequence variants affecting kinase function, and bioinformatics tools that can predict phosphorylation sites
in addition to the kinase that phosphorylates them, infer kinase activity, and predict the effect of mutations on kinase
signaling. However, these resources exist in silos and it is challenging to select among multiple resources with similar

functions. Therefore, we put together a comprehensive collection of resources related to phosphoproteomics data
interpretation, compared the use of tools with similar functions, and assessed the usability from the standpoint of
typical biologists or clinicians. Overall, tools could be improved by standardization of enzyme names, flexibility of data
input and output format, consistent maintenance, and detailed manuals.
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Background

Kinase signaling, the reversible enzymatic addition of
a phosphate group to a substrate, is an essential part of
cellular activity. Because its dysregulation contributes to
many diseases, numerous clinical trials have been per-
formed with kinase inhibitors resulting in over 50 FDA-
approved small molecules and targeted antibodies [1,
2]. Therefore, detailed knowledge of the kinase signaling
process is essential for the understanding of diseases and
the development of new therapies.
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While kinase signaling has been studied for over
100 years using a variety of experimental methods, the
recent generation of mass spectrometry-based phos-
phoproteomic profiling allows for an unprecedented
global exploration of phosphorylation. Phosphoprot-
eomics data analysis involves two major steps. The first
step includes the identification, phosphosite localiza-
tion, and quantification of phosphopeptides. The second
step aims to translate phosphopeptide identification and
quantification results into novel biological and clinical
insights. Although analyses in the first step are typically
performed by the proteomics cores using standardized
computational tools, those in the second step require
and can benefit from active involvement of biologists and
clinicians.
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A vast array of resources and tools are available to facil-
itate the interpretation of phosphopeptide identification
and quantification results. However, each of these tools
exists as a silo without connection to tools with comple-
mentary functions. In addition, many tools have overlap-
ping functions but differ in underlying knowledge bases,
algorithms, input and output format of data, accessibil-
ity, advantages, limitations, and maintenance. Although
newly developed tools are usually compared to similar,
previously published tools, comparisons often do not
include real-world, biological use-cases. For example,
inference of kinase activity based on the observed phos-
phorylation of its substrates is a powerful application
of phosphoproteomics profiling, and multiple methods
have been developed to address this need [3, 4]. However,
there has been little validation of the methods and only
one benchmarking study comparing a few of the methods
has been published [3].

Biological and clinical scientists are in the best posi-
tion to extract biologically and clinically relevant findings
from phosphoproteomics data, however, they are rarely
consulted for tool design input or requested to test the
final product. Furthermore, there is no comprehensive
list of tools to aid those using phosphoproteomic data
in their research. Therefore, this article aims to pro-
vide a comprehensive collection of resources that can
be used to gain insights from phosphoproteomic data,
including knowledge bases of kinases and phosphatases,
phosphorylation sites, kinase inhibitors, and sequence
variants affecting kinase function, and bioinformatics
tools that can predict phosphorylation sites in addition to
the kinase that phosphorylates them, infer kinase activ-
ity, and predict the effect of mutations on kinase signal-
ing. We perform some benchmarking comparisons to
determine the best tool available and assess usability
of the tools from the standpoint of typical biologists or
clinicians.

Main text

Collection of knowledge bases and tools

The OMICtools resource (https://omictools.com) is a
manually curated collection of bioinformatics tools [5].
This site was searched in July 2019 for tools using the
words ‘kinase, ‘phosphorylation, ‘phospho;, or ‘phos-
phatase! In addition, several more tools were collected
from the literature. Only tools that were freely available,
still accessible, and non-obsolete were included, and tools
specific for organisms other than human were discarded.
The year of last update was assumed to be the year of
publication unless otherwise noted on the website. These
tools may be accessed by a downloadable, locally-run tool
(Tool) or by a website (Web) that may have download-
able (DL) results or database information. The website
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URLSs for all resources can be found in Additional file 1:
Table S1. Each website was accessed in July 2019 and data
statistics were collected for human proteins from down-
loadable files where possible and from websites or manu-
scripts for online-only resources.

Knowledge bases of kinases and phosphatases

General information about the components involved in
kinase signaling is required throughout the analysis and
interpretation of phosphoproteomics data. Knowledge
bases for kinase signaling can be separated into those col-
lecting information on the enzymes, and those collecting
experimentally validated phosphorylation sites. Of the 16
different resources that collect information specifically
on protein kinases and phosphatases, 13 provide data on
kinases, while 5 provide data on phosphatases (Table 1).
Only two resources, the Eukaryotic Protein Kinase &
Protein Phosphatase Database (EKPD) and its updated
version iEKPD contain information on both types of
enzymes [6]. Most databases are only available as online
websites, but some provide an option for downloading
data (Table 1).

The kinase knowledge bases can be further separated
into two different types: those that include comprehen-
sive data on all known protein kinases, and those that
were developed for a specific purpose, such as collect-
ing driver mutations in kinases (Kin-Driver). Notably,
no kinase resource collects data on non-protein kinases.
KinBase, which was developed by Gerard Manning, con-
tains 538 protein kinases and is considered the primary
source of human protein kinases and their classifica-
tion [7]. Many other resources base their kinase list on
KinBase.

Kinomer and KinG are general kinase sequence data-
bases that provide very little other information [8, 9].
KinMutBase, a collection of disease-causing mutations
in protein kinase domains, is outdated, contains data on
only 31 kinases, and primarily consists of broken links
[10]. KinWeb and EKPD provide gene and protein iden-
tifiers, classification, description, and sequence informa-
tion, but these data can also be found in other resources.
However, KinWeb does have prediction of the disulfide
bonding state of cysteines in the protein, as well as pre-
diction of alpha helices, and EKPD presents data in an
easy-to-read format [6, 11].

Use of the remaining general resources depends on
which data one wants to access. KinaseNET, ProKinO,
and iEKPD contain the most comprehensive data on pro-
tein kinases, but KinaseNET and ProKinO are only avail-
able as online resources [12, 13]. They include protein
sequences, links to the kinases in other databases (e.g.,
UniProt, Ensembl, Entrez), information on the kinase
domains, expression in tissue, and disease associations.
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Table 1 Knowledge bases of human kinases and phosphatases

Name Last update Method of access Version Enzyme Human enzyme References
number

KinWeb 2005 Web Protein Kinases 519 n1

Kinomer 2008 Web|DL 1 Protein Kinases 505 (8]

MOKCa 2008 Web Protein Kinases 423 [14]

HuPho 2012 Web|DL Phosphatases 313 [18]

KIDFamMap 2012 Web Protein Kinases 399 [17]

EKPD 2013 Web 1.1 Protein Kinases and Phosphatases 676 [6]

KinBase 2014 Web Protein Kinases 538 [7]

KinMutBase 2015 Web|DL 4 Protein Kinases 31 [10]

DEPOD 2016 Web|DL 1.1 Phosphatases 239 [19]

KinaseNET 2017 Web Protein Kinases >530

Kin-Driver 2017 Web|DL 82 Protein Kinases 518 [15]

Phosphatome 2017 Web 3 Phosphatases 189 [20]

iEKPD 2018 Web|DL 2.0 Protein kinases and Phosphatases 695 [105]

KLIFS 2018 Web|DL 24 Protein Kinases 292 [16,106]

KinG 2019 Web|DL Protein Kinases 1502 )

ProKinO 2019 Web 2 Protein Kinases 538 [12]

ProKinO specifically contains pathway information,
mutations and their disease associations, chromosomal
location of the kinase, and links to published manu-
scripts. KinaseNET includes PTMs, known binding
partners, inhibitors, upstream kinases, downstream sub-
strates, and information about regulation. KinaseNET
provides all data on a single page, ProKinO requires more
than 10 clicks on separate tabs and pages to obtain all
information on a kinase, and iEKPD contains links for 13
additional annotations.

For disease studies, MOKCa and Kin-Driver spe-
cifically have data on protein kinase mutations [14, 15].
MOKCa has tissue specificity of mutations while Kin-
Driver focuses on driver mutations and reports whether
the mutation is activating or inactivating. KLIFS provides
structural information for approximately half of the pro-
tein kinases bound to various ligands [16]. Finally, KID-
FamMap combines structural data with known kinase
inhibitors and diseases [17].

Because phosphatases are less well studied than
kinases, there are fewer resources dedicated to their col-
lection. EKPD and iEKPD provide the same information
for phosphatases as they do for kinases. HuPho, however,
was the first comprehensive collection of phosphatases
and the database includes pathway and substrate data, as
well as siRNA phenotype data and links to orthologs in
other species [18]. DEPOD used data from HuPho as a
starting point and therefore contains much of the same
information [19]. Finally, Phosphatome.Net is the phos-
phatase version of KinBase [20]. The website contains
basic classification and sequence information.

Knowledge bases of phosphorylation sites

Besides information about specific kinases and phos-
phatases, data on phosphorylation sites are important for
studying the signaling process. Phosphorylation site data-
bases collect information on the location of phosphoryl-
ated residues in proteins from experimental data. These
experiments can be low-throughput or high-throughput.
High-throughput phosphorylation site identifications are
assigned by probability unlike the more stringent experi-
mental validation in low-throughput experiments, but
some databases combine sites from both types of experi-
ments without identifying the source experiment type.

In addition to phosphorylation site information, 16
of the 27 (60%) resources collect interactions between
kinases or phosphatases and their substrates (Table 2).
These often do not include the exact phosphorylation
site, but instead provide interactions between an enzyme
and its substrate at the gene level.

The four main resources for phosphorylation sites
curated data manually from the literature (Fig. 1). HPRD
and Swiss-Prot are general databases of all proteins [21,
22]. The remaining two, PhosphoSitePlus and Phospho.
ELM, specifically contain phosphorylation site infor-
mation [23, 24]. Both PhosphoSitePlus and Swiss-Prot
are frequently updated, while HPRD and Phospho.ELM
were last updated in 2010. All four of these databases also
include kinase information for sites if known.

Other smaller databases were generated through
manual curation or publication of a laboratory’s own
phosphorylation site data. KANPHOS collects phos-
phorylation sites in neural signaling identified by
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Table 2 Databases of phosphorylation sites

Name Last update Method of access Version Sites Proteins Kinases Phosphatases DataType References
PhosphoPep 2007 Web|DL 20 3980 MS [30,31]
HPRD 2010 Web|DL 9 78,005 11,807 291 42 UNSP [21,107,108]
Phospho.ELM 2010 Web|DL 9.0 26,651 5374 250 HT, LT [24,109, 110]
Phospho3D 2010 Web|DL 20 1770 59 HT, LT [44]
PHOSIDA 2011 Web|DL 324 24,262 8283 MS [26,111]
HuPho 2012 Web|DL 190 121 55 UNSP [18]
PTMfunc 2012 Web 31,165 MS [32]

ANIA 2013 Web|DL 305 220 LT [35,112]
PhosphoNetworks 2013 Web|DL 1140 255 UNSP [36]

RegPhos 2013 Web|DL 20 66,301 10,849 380 UNSP [42,113]
Kinome NetworkX 2014 DL 173,460 18,610 357 UNSP [41]
ProteomeScout 2014 Web|DL 2 290,007 23,387 MS [39,114]
LymPHOS 2015 Web|DL 2 15,566 4937 MS [27,115]
PhosphoDB 2015 Web 25864 6222 MS [29]

dbPAF 2016 Web|DL 1.0 244,034 18,773 UNSP [38]

DEPOD 2016 Web|DL 1.1 253 210 88 UNSP [19]
KANPHOS 2016 Web B 73 MS [25]
PhosphoAtlas 2016 DL 2595 1284 501 UNSP [
Phosphopedia 2016 Web 1.0 109,611 11,428 MS [28]
Phosphatome 2017 Web 3 6008 2000 319 106 UNSP [20]
PhosphoNET 2017 Web 966,817° 22,698 488 UNSP +pred  [43]

PTMD 2018 Web|DL 1.0 690 434 UNSP [37]

gPhos 2018 Web|DL 199,071 18,402 MS [33]

dbPTM 2019 Web|DL v2019 257,527 19,713 25 UNSP [40,64, 116, 117]
PhosphoSitePlus 2019 Web|DL Aug-19 239664 20,115 372 HT, LT [23]

Signor 2019 Web|DL May-19 3593 1285 336 70 UNSP [34,118]
Swiss-Prot 2019 Web\DL Jun-19 40,135 7965 352 UNSP [22,119]

The number of unique kinases and phosphatases reported to phosphorylate sites in the database is included. For some databases, these numbers include enzyme
groups in addition to individual enzymes. Data type indicates whether the data are from mass spectrometry (MS) experiments, separated high-throughput (HT) and
low-throughput (LT) experiments, or whether the database combines data from both HT and LT experiments without specifying (UNSP)

2 Indicates inclusion of predicted phosphorylation sites (pred)

high-throughput experiments [25]. LymPHOS, Phos-
phoDB, Phosphopedia, and PHOSIDA are collections of
data that were primarily produced in cell lines [26-29].
PhosphoPEP integrates mass spectrometry experiments
from Cell Signaling Technology and their own laboratory
[30, 31]. PTMfunc and qPhos both collect mass spec-
trometry experiments and add functional predictions
and kinase activity from various tools [32, 33]. Signor
extracts high quality signaling interactions from the lit-
erature [34]. Finally, ANIA, PTMD, and PhosphoNet-
works curate the literature for a specific purpose. ANIA
collects phosphorylation sites that serve as binding sites
for 14-3-3 proteins, while PhosphoNetworks creates a
kinase-substrate network curated from the literature and
a protein microarray experiment, and PTMD collects dis-
ease-related phosphorylation sites [35-37].

The remaining resources integrate phosphoryla-
tion sites and kinase information from other databases

(Fig. 1). The database dbPAF collects phosphorylation
sites from several databases [38]. ProteomeScout also
collects phosphorylation sites from other databases along
with literature-curated experiments and provides a tool
for analyzing a user’s data [39]. The database dbPTM col-
lects all PTMs and the responsible enzyme from several
sources [40]. Kinome NetworkX, RegPhos, and Phos-
phoAtlas curate and integrate data specifically to create
kinase-substrate networks [1, 41, 42]. PhosphoNET is an
online-only tool that includes predicted phosphoryla-
tion sites in addition to those with experimental evidence
[43]. Finally, Phospho3D specifically collects phosphoryl-
ation sites with 3D structures [44].

Five databases collect information on phosphatase-
substrate interactions. As mentioned, DEPOD, HuPho,
and Phosphatome.Net all curate enzyme interactions
from the literature. HPRD and Signor also collect some
site-specific phosphatase information.
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Each database contains a different number of phos-
phorylation sites and enzyme-substrate relationships
depending on the source and method of collection
(Table 2). ProteomeScout, PhosphoSitePlus, dbPTM,
and dbPAF contain the most experimentally validated,
downloadable sites. The site numbers for these four data-
bases include specific protein isoforms, as do several
other resources. PhosphoAtlas contains substrates for
the largest number of individual kinases. Signor, Swiss-
Prot, RegPhos, Phospho3D, dbPTM, and Phospho.ELM
have substrates for individual kinases and kinase families.
Finally, PhosphoSitePlus has substrates for some specific
kinase isoforms.

Errors in substrate databases

Based on our examination, PhosphoSitePlus is the pre-
ferred resource for experimentally-identified phospho-
rylation sites and kinases for phosphorylation sites.
PhosphoSitePlus is frequently updated, well-curated, and
distinguishes between low and high-throughput identi-
fied sites. The downstream integrating databases suffer
from ID mapping errors. For example, in PhosphoAtlas
there is an entry for PEG (paternally expressed gene 3)
phosphorylating CDC25B. PEG is not a known kinase,
but pEg3 kinase (also known as maternal embryonic leu-
cine zipper kinase, MELK) is known to phosphorylate
CDC25B [45]. Many of the downstream databases also
have issues with PDPK1 and PDKI. The gene PDPKI,
3-phosphoinositide-dependent protein kinase 1, pro-
duces a protein known to the biological community as

PDK1. However, there is an additional kinase, pyru-
vate dehydrogenase kinase, that is produced by the gene
PDKI. Databases that try to integrate sites frequently
attribute the substrates of PDPK1 to PDK1. Finally, inte-
grating databases propagate errors from the original
databases. For example, HPRD contains an entry for
PTPN11 phosphorylating PTK2B although PTPN11 is a
known phosphatase and not a kinase. The original manu-
script connected to this entry confirmed that PTPN11 is
a phosphatase and that it just binds to PTK2B at that par-
ticular site [46]. Databases that collect information from
HPRD, such as RegPhos and PhosphoAtlas, include this
incorrect entry for PTPN11.

Known substrates of kinases and phosphatases

The four main databases of kinases together produce
485 substrate sets of individual kinases and kinase fami-
lies (Fig. 2a). PhosphoSitePlus contains the most unique
sites, while other databases contribute only a few addi-
tional sites per kinase. CSNK2A1 has the most substrates
(596), while over half of the sets contain fewer than 10
substrates.

For substrates of phosphatases, DEPOD, HPRD, and
Phosphatome.Net combined produce sets for 83 phos-
phatases. The most unique information comes from
DEPOD and Phosphatome.Net. The number of known
sites for each phosphatase is far fewer than that for
kinases. PPP2CA has the most substrates (167), while
70% of the phosphatases have fewer than 10 substrates
(Fig. 2b).
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Phosphorylation site prediction tools

Despite decades of research, very few phosphorylation
sites have known kinases or phosphatases. Of the sites in
PhosphoSitePlus, only about 3% have an experimentally
validated human kinase. Therefore, numerous tools have
been developed to predict which sites in a protein can be
phosphorylated and which kinases phosphorylate that
given site.

These prediction tools were developed using a vari-
ety of features and methods and have been reviewed
elsewhere [47, 48]. The early versions of phosphoryla-
tion site predictors were motif-based. They generated
the frequency of amino acids surrounding a site and

searched for that pattern in protein sequences. Later
tools used more sophisticated methods such as sup-
port vector machines (SVM), random forest, Bayesian
probability, position specific scoring matrices (PSSM),
and deep neural networks [49-53]. Besides amino acid
sequence, tools included a vast array of features such as
the 3D structure of the phosphorylation site, disorder
score, cell cycle data, and co-expression of kinases and
substrates [54—56]. Others, like NetworKIN and iGPS,
used protein—protein interaction data to filter predic-
tions [57, 58]. Table 3 provides an overview of all cur-
rently available tools to predict phosphorylation sites
or kinases for phosphorylation sites. While a few tools
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Table 3 Available phosphorylation site and kinase-substrate prediction tools

Tool Lastupdate Version Prediction type Method Kinases/ Type References

phosphatases

DISPHOS 2004 13 Phosphorylation sites Bagged logistic regression 0 Web [54]

PPSP 2006 1.06 Phosphorylation sites of Bayesian decision theory 68 Web [52]
kinases

KinasePhos2.0 2007 20 Phosphorylation sites of SVM 58 Web [51]
kinases

pkaPS 2007 Phosphorylation sites of PKA  Scoring function 1 Web|DL [72]

PhoScan 2008 Phosphorylation sites of Scoring function 48 Web|Tool [60]
kinases

Phos3D 2009 Phosphorylation sites and SVM 5 Web [55]
some kinase specificity

Musite 2010 1 Phosphorylation sites and SYM 13 Web|DL [62]
some kinase specificity

PHOSIDA Predictor 2011 324 Phosphorylation Sand T SVM 0 Web [26]
sites

Predikin 2011 Phosphorylation sites of PSSM any Web|DL [53]
kinases

GPS-Polo 2012 1.0 Phosphorylation sites of Plk  Group-based scoring func- 1 Web|Tool [120]

tion PSSM

iGPS 2012 1.0.1 Phosphorylation sites of GPS with PPI 407 Tool [57]
kinases in vivo

CEASAR 2013 Kinases for known phospho- Naive Bayes 289 DL [56]
rylation sites

HMMpTM 2013 Phosphorylation sites of HMM 9 Web|DL [121]
kinases and topology

PKIS 2013 Phosphorylation sites of SVM 56 Web [122]
kinases

GPS 2014 50 Phosphorylation sites of Group-based scoring func- 464 Web|DL[Tool  [61]
kinases tion PSSM

NetPhorest 2014 2.1 Phosphorylation sites of ANN and PSSM 244 Web|DL[Tool  [58, 65]
kinases

NetworKIN 2014 3.0 Phosphorylation sites of Naive Bayes with PPI 123 Web|DL[Tool  [58, 66]
kinases in vivo

phos_pred 2014 Predicts phosphorylation Random forest 54 Tool® [49]
sites for kinases

PhosphoSVM 2014 Phosphorylation sites SVM 0 Web [123]

Ptpset 2014 Dephosphorylation sites of ~ KNN 3 Web [124]
phosphatases

jEcho 2015 1.0 Phosphorylation sites of Weight vector 12 Tool [68]
kinases

KSP-PUEL 2015 Phosphorylation sites of SVM ensemble 2° Tool [63]
kinases

Scansite 2015 Kinase motifs in proteins PSSM 70 Web|DL [125]

DAPPLE 2016 Phosphorylation sites BLAST 0 Web|DL [126]

iPhos-PseEn 2016 Phosphorylation sites Random forest ensemble 0 Web [127]

PhosphoPICK 2016 Phosphorylation sites of Bayesian network 107 Web|DL [70]
kinases

PhosD 2016 Kinase-substrate relation- Probabilistic model 399 DL [128]
ships

MusiteDeep 2017 Phosphorylation sites and DNN 5 Tool® [50]
some kinase specificity

NetPhos 2017 3.1 Phosphorylation sites and ANN 17 Web|Tool [59,71]
some kinase specificity

PhosphoNET 2017 Phosphorylation sites of PSSM 488 Web [43]
kinases

PhosPred-RF 2017 Phosphorylation sites Random forest 0 Web [129]
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Table 3 (continued)
Tool Lastupdate Version Prediction type Method Kinases/ Type References
phosphatases
AKID 2018 Phosphorylation sites of DNN 496 Web|DL|Tool®  [69]
kinases
CapsNet_PTM 2018 Phosphorylation sites and DNN any Tool [130]
some kinase specificity
PTM-ssMP 2018 Phosphorylation sitesand ~ SYM 9 Web|DL (131
some kinase specificity
Quokka 2018 Phosphorylation sites of Logistic regression 65 Web|DL [132]
kinase families
TyrPred 2018 Phosphorylation sites of Tyr  Elastic net 15 Web [133]
kinases
CoPhosK 2019 Kinases of phosphorylation  Naive Bayes 101 Web|Tool [134]
sites
DeepPhos 2019 Phosphorylation sites and DNN 20 Tool [67]

some kinase specificity

2 Indicates number of trained kinases, but tool can be trained with others

SVM support vector machine, PSSM position specific scoring matrix, GSEA gene set enrichment analysis, ANN artificial neural network, DNN deep neural network, HMM

hidden Markov model, PPl protein-protein interaction, KNN K-nearest neighbor

2 Indicates tool is not available for all three main operating systems (Linux, Mac, Windows)

have been developed to predict sites for phosphatases,
only Ptpset, NetPhorest, and NetworKIN are still acces-
sible [49, 58].

Figure 3 shows phosphorylation site predictor tools
and the resources they used to make predictions.
Almost all phosphorylation site predictors were trained
using data from Phospho.ELM. Swiss-Prot and Phos-
phoSitePlus were also heavily used resources. Notably,
almost all tools were developed using experimentally
verified substrate data as the training set. Therefore, the
tools are only able to predict the responsible kinase if
there is sufficient data for substrates of that kinase.

A researcher may utilize these prediction tools to iden-
tify kinases phosphorylating single substrates of interest,
for which web-based tools would suffice. However, the
limit on the number of sequences submitted for predic-
tion and the lack of downloadable results prevent these
same tools for being useful in large-scale phosphopro-
teomic studies. Unfortunately, many tools appropriate
for large-scale studies have multiple issues limiting their
use. First, tools can be difficult to install, platform-spe-
cific, and lack manuals on use. For example, NetPhos [59]
is downloadable but can only be run on Linux, whereas
PhoScan [60] can only be run on Windows machines.
Other tools require commercial software such as MAT-
LAB or even require understanding a programming lan-
guage to modify hard-coded variables. Finally, tools like
GPS [61] and phos_pred [49] provide pre-defined cutoffs
for prediction, while others like musite [62] and KSP-
PUEL [63] allow users to define their own thresholds or
to train the models using their own data.

Testing kinase-substrate relationship prediction tools
For large-scale kinase-substrate prediction, 14 pre-
trained tools were available that provide downloadable
results. The best, unbiased way to test these tools is to use
validated sites that were not used for the training of any
tool. Unfortunately, most tools do not report the actual
sites used for training and finding a set of sites to fit these
criteria is nearly impossible. Therefore, we evaluated all
14 tools using gold-standard positive and negative human
phosphorylation sites downloaded from dbPTM [64] for
four serine/threonine kinases (CDK1, CK2, MAPK1, and
PKA). Positive sites were serines and threonines experi-
mentally validated to be phosphorylated by a particular
kinase. Negative sites were serines and threonines not
known to be phosphorylated on the same proteins. The
outcomes might be biased in favor of newer tools and
those that used some of these sites in their training.
Tools predicting kinases for phosphorylation sites
(Table 3) were accessed through local tool installation
or through the tool’s website. PhoScan [60] and phos_
pred [49] were run locally on a Windows laptop, while
NetPhorest [65], NetworKIN [66], iGPS [57], GPS [61],
DeepPhos [67], jEcho [68], and MusiteDeep [50] were
run locally on a Mac laptop. AKID [69], PhosphoP-
ICK [70], NetPhos [71], Musite [62], and pkaPS [72]
were accessed via their websites. Tools were set with
the lowest threshold if they did not have an option to
return scores for all sites. For each site, the maximum
score was retained if the tool predicted for more than
kinase isoform (e.g., the maximum score of PKCalpha
and PKCbeta on the same site). If a tool did not return
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Fig. 3 Network of phosphorylation site predictor tools and the resources used to make predictions. Tools are colored purple while the databases

a score for a site, the lowest possible score was given to
the site. The receiver operating characteristic (ROC)
curve and area under the ROC curve (AUROC) were
calculated for the results from each tool using the R
package ROCR [73].

ROC curves for four kinases (CDK1, CK2, MAPKI1,
and PKA) are shown in Fig. 4. Notably, musite was
unable to predict for a few random protein sequences
in each submission. DeepPhos and phos_pred both
required manual edits of hard-coded variables. Musit-
eDeep and GPS had the highest area under the curve
(AUC) for all kinases tested. The PKA-specific tool
pkaPS also performed well. Performance for most
tools, however, varied across kinases.

Comparison of kinase activity tools

The known or predicted kinases for phosphorylation sites
can be used to infer kinase activity from global phospho-
proteomic data. Tools and methods have been developed
to predict kinase activity, but there has been little effort
spent towards comparing these tools or determining the
most biologically-relevant set of parameters. The avail-
able tools (PHOSIDA, KEA2, KSEA App, PHOXTRACK,
INKA, and IKAP) each use a different algorithm to infer
activity (Table 4). The PHOSIDA de novo motif finder
uses a simple method of bootstrapping to determine
enrichment of sequence motifs in a set of phosphoryl-
ated peptides and then matches those to known kinase
motifs [26]. Kinase Enrichment Analysis 2 (KEA2) uses



Savage and Zhang Clin Proteom (2020) 17:27

Page 10 of 18

a
o
o
@© _|
o
2
o
P 7
°>') o MusiteDeep:0.97
= = - DeepPhos:0.96
3 - - Musite:0.94
Q < - - GPS:0.94
o O - = Netphorest:0.94
= - AKID:0.93
= —— NetworKIN:0.92
N PhoScan:0.92
o ’ —— phos_pred:0.76
PhosphoPICK:0.68
— iGPS:0.61
8 - —— NetPhos:0.5
I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate
C
o
2
«© _|
o
2
Y
© _|
2 o
= —— MusiteDeep:0.98
3 - - GPS:0.96
o < _| - - AKID:0.96
o O — jEcho:0.93
2 - - Musite:0.92
= PhoScan:0.91
N - = Netphorest:0.88
© —— NetworKIN:0.84
—— phos_pred:0.83
PhosphoPICK:0.72
g - — iGPS:0.65

I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

MAPK1, and d PKA. The AUC for each tool is listed next to the tool name

Fig. 4 ROC curves for substrate prediction of four kinases. The false positive

b
o
o
@ _]
o
2
g
© _]
2 o MusiteDeep:0.98
= - - AKID:0.92
3 - - GPS:0.91
o < _| - - DeepPhos:0.9
o O - - Netphorest:0.87
= PhoScan:0.86
= —— NetPhos:0.86
N —— NetworKIN:0.83
© - - Musite:0.82
PhosphoPICK:0.79
— iGPS:0.65
g _ —— phos_pred:0.64
I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate
d o
= ===
@ _]
o
2
©
= o _| MusiteDeep:0.99
2 o GPS:0.98
= pkaP$:0.97
8 Netphorest:0.96
o < _| AKID:0.96
o O DeepPhos:0.95
2 Musite:0.93
= NetPhos:0.92
N NetworKIN:0.91
o PhoScan:0.91
jEcho:0.87
PhosphoPICK:0.77
g _ — iGPS:0.63

I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
and true positive rates of substrate prediction for a CDK1, b CK2, c

over-representation analysis to determine enrichment of
kinase substrates in a condition [74]. Similarly, the KSEA
App uses mean phosphorylation of substrates of kinases
as a proxy for activity [4]. PHOXTRACK modified pre-
ranked gene set enrichment analysis (GSEA) to deter-
mine enrichment of known kinase targets [75]. IKAP
extended these methods using a cost function to infer the
relative contributions of multiple kinases acting on the
same site [76]. Finally, INKA combines the GSEA method
with activating 